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Abstract Color distribution is the most effective cue that
is widely adopted in previous interactive image segmenta-
tion methods. However, it also may introduce additional er-
rors in some situations, for example, when the foreground
and background have similar colors. To address this prob-
lem, this paper proposes a novel method to learn the seg-
mentation likelihoods. The proposed method is designed for
high reliability, for which purpose it may choose to dis-
card some unreliable likelihoods that may cause segmen-
tation error. The reliability of likelihoods is estimated in a
few Expectation–Maximization iterations. In each iteration,
a novel multi-class transductive learning algorithm, namely,
the Constrained Mapping, is proposed to learn likelihoods
and identify unreliable likelihoods simultaneously. The re-
sulting likelihoods then can be used as the input of any
segmentation methods to improve their robustness. Exper-
iments show that the proposed method is an effective way to
improve both segmentation quality and efficiency, especially
when the input image has complex color distribution.
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1 Introduction

Image segmentation has long been an active yet challenging
research topic, and is found to be a fundamental problem
in a wide variety of applications, including image editing,
medical image processing, object recognition, etc.

Interactive image segmentation is the most flexible way
to get what the user wants from input image. In recent years
there have been proposed a lot of interactive segmentation
methods. The popular methods can be categorized as fol-
lows: (1) Graph Cut (GC) based methods [3, 4, 17, 21].
Graph Cut [6] is an efficient way to minimize the en-
ergy function of Markov Random Fields (MRFs), which
is the basic form of many image segmentation methods
(see Sect. 2.1). In the past decade it has always been the
most popular framework of image segmentation, for bilayer
segmentation it can get the global optimal solution effi-
ciently [6], and for multi-layer segmentation it also can get
the local minimum by iteratively applying the binary cuts
[4]. (2) Random Walks (RW) based methods [10, 11, 19],
which view image segmentation as a diffusing process on
a weighted graph, with each node corresponds to a pixel
and the weight of each edge relates to the color difference
of the two connected pixels, the segmentation result then
can be obtained by solving a sparse linear system. Com-
pared with GC, RW is less efficient; however, it can produce
soft segmentation, which is desirable in some situations.
(3) Geodesic based methods [1, 7, 12, 16, 23], which classify
pixels mainly by their geodesic distance to the foreground
and background seed pixels, the geodesic distance is calcu-
lated based on image gradients. By using the fast geodesic
distance transform, these methods can be extremely fast, and
thus are suitable for video segmentation.

Although the above methods are different in many as-
pects, the cues they use to solve for the segmentation are
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Fig. 1 The learnt likelihoods can result in either better (A) or worse (B) segmentation result. (a) Input image and user strokes. (b) Results produced
without using any learnt likelihoods. (c) Likelihoods map obtained with GMMs. (d) Results produced with the likelihoods in (c)

common, and mainly contain: (1) constraints of seed pixels,
whose states are manually marked by the user; (2) the learnt
likelihoods. The likelihood of each unknown pixel measures
its probability to belong to foreground and background, and
is typically estimated based on the color distribution of fore-
ground and background, which can be trained with the col-
ors of seed pixels as training data. Figure 1(c) shows the
examples of likelihoods map. (3) The priors about the seg-
mentation, a good segmentation is typically assumed to be
smooth and contrast-sensitive [3], which is helpful to sup-
press noise and make the segmentation boundary align to
image edges.

Intuitively, more cues provide us with more knowledge
about the segmentation, and thus should produce better seg-
mentation. However, this is not always true. It has been
proven that using the smooth prior may cause long thin ob-
jects to be cut off [21], and using the contrast-sensitive prior
may result in missegmentation along the undesirable strong
image edges [20]. So far there has no special attention paid
to the learnt likelihoods. Previous works usually adopt Gaus-
sian Mixture Models (GMMs) to model the color distribu-
tion of the foreground and background, but never discuss
its side-effect. In fact, as demonstrated in Fig. 1B, the like-
lihoods learnt though GMMs may contain a lot of errors,
which would cause the result to be even worse than that pro-
duced without using any learnt likelihoods.

Generally, because there is no learning algorithm that can
achieve zero error rate, the learnt likelihoods unavoidably
contain some error, i.e. false likelihoods. A small quantity
of false likelihoods would not cause any problem because
their effects can be suppressed by using priors. However, if
large quantity of false likelihoods are involved as cues, mis-
segmentation would occur, which often happens to input im-
ages of complex color distribution. For example, in Fig. 1B
some parts of the foreground and background have similar

color, in which case there is no classifier can guarantee the
accuracy of the learnt likelihoods. Therefore, the learnt like-
lihoods are not always trustable, and instead of using all of
them as the segmentation cue, only those of high reliability
should be used.

Notice that the reliability is not the probability of the pre-
dicted class because the latter can be seriously biased due
to imperfect inductive biases [14]. A common misunder-
standing about the probability is that if a feature is undis-
tinguishable between two classes (e.g. a color appearing in
both foreground and background), a classifier would assign
it nearly equal probabilities to be the two classes. This is not
true for most classifiers, including GMMs, k-NN and SVM.
Figure 1B shows you the case of GMMs. Section 2.3 will
further discuss about these classifiers in more details. Using
these classifiers to learn the likelihoods may introduce a lot
of segmentation errors, as demonstrated in Fig. 1B.

In this paper we propose a novel method to learn the seg-
mentation likelihoods. Unlike previous learning algorithms,
our method is designed for high reliability but not for high
prediction rate, and it may answer “unknown” in extremely
difficult cases in order to avoid making a mistake (producing
false likelihoods). In this way it can be guaranteed that using
learnt likelihoods would not introduce additional errors (the
case in Fig. 1B). Compared with previous works on image
segmentation, which achieve improvements mainly by in-
troducing novel solving method or additional cues, we are
devoted to a more fundamental problem, that is, the way
to obtain reliable likelihoods, which is of great significance
because no segmentation method can work well with like-
lihoods that contain a lot of errors. Our method can be ap-
plied to any method that utilize the learnt likelihoods, and
can help them to get better result with less user interaction.
It also makes the system more predictable and more con-
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trollable, and it may ease the user’s pain to tune parameters,
especially for input images of complex color distribution.

2 Segmentation likelihoods

In this section we will first briefly introduce a general seg-
mentation framework which serves as the basic form of wide
variety of segmentation methods, then discuss some prop-
erties of the learnt likelihoods and show the importance of
learning reliable likelihoods.

2.1 A general segmentation framework

Let us denote by x = (x1, . . . , xi, . . . , xN) an array of colors
that represents the input image, with i the index of pixels.
α = (α1, . . . , αi, . . . , αN) is the corresponding segmentation
result, where αi ∈ {0,1} is the state of the ith pixel. For soft
segmentation and matting, αi can also take continuous val-
ues between 0 and 1.

The Gibbs energy formulation of image segmentation
then can be expressed as the posterior of α:

p(α|x) = 1

p(x)
p(x|α)p(α) (1)

In terms of the Bayes theorem, p(x) is the normalizing con-
stant, p(x|α) is the likelihoods, and p(α) is the priors. The
above equation can be factored with respect to pixels:

p(α|x) = 1

p(x)

∏

i

P (αi)
∏

(i,j)

P (αi, αj )
∏

(i,j,k)

· · · (2)

where P(αi) = p(xi |αi)p(αi) is the brief representation of
the unary terms, P(αi,αj ) is the binary terms. The factor-
ization can be greatly simplified by supposing the Markov
property, which assumes that only neighboring pixels are di-
rectly related, therefore:

p(α|x) ≈ 1

p(x)

∏

i

P (αi)
∏

(i,j)∈N

P(αi,αj )

= 1

Z
exp

{−E(α)
}

(3)

where

E(α) =
∑

i

D(αi) + λ
∑

(i,j)∈N

S(αi, αj ) (4)

in which N is the set of all neighborhoods. E(α) is the en-
ergy function that can be minimized to get α. D(αi) and
S(αi, αj ) are the two types of energy terms that relate to
the likelihoods and priors, and are usually called data and
smooth terms, respectively, as the cues they encode indicate.

In interactive image segmentation, the states of the seed
pixels are known, which provides us with another type of
constraint, namely, the seed constraint. Adding seed con-
straint into (4) is straightforward:

E(α) = c
∑

i∈Q
|αi − α̇i |2 +

∑

i

D(αi)

+ λ
∑

(i,j)∈N

S(αi, αj ) (5)

where Q is the set of seeds, α̇i are their true states, c is a
large constant number. The above equation is essential the
same as (4) because the seed terms can be merged with the
data terms (both are unary). Here we separate them apart just
for clarity when to discuss their effects.

Equation (5) is the basic form of many segmentation
methods, including the popular GraphCuts and Random
Walks based methods. The Geodesic-based methods also
can be formulated in this way by some extensions [7].

2.2 Effect of the learnt likelihoods

The learnt likelihoods are not always necessary, for exam-
ple, in [11] and [19] the likelihoods are not involved, i.e.
the data terms in (5) are constant. However, in most situa-
tions using the learnt likelihoods as cues is helpful to reduce
user interaction [10], especially when segmenting objects of
complex topology is in order, or when the input image is
highly textured (as the case in Fig. 1A).

In fact, the learnt likelihoods acts the same as seed con-
straints, except that it is estimated through learning and thus
may contain errors. For two-layer segmentation, the likeli-
hood of the ith pixel can be represented as its probabilities
to be the foreground (p(xi |F)) and background (p(xi |B)),
which can be used to estimate the state of the ith pixel:

α̂i = p(xi |F)

p(xi |F) + p(xi |B)
(6)

α̂i can also be regarded as the observed value of α̇i (the
true state of the ith pixel). Now that α̂i is estimated through
learning, error is unavoidable. The likelihood of the ith pixel
is said to be false if |α̂i − α̇i | > 0.5. For example, the like-
lihood of a background pixel is false implies α̂i > 0.5, and
subsequently p(xi |F) > p(xi |B), which obviously contra-
dict the truth.

As demonstrated in Fig. 1B, the learnt likelihoods can
cause missegmentation if much of them are false. Fig-
ure 1B(d) is the likelihoods map visualized through the es-
timated states α̂i , from which one can easily find out a lot
of false likelihoods, and it is these false likelihoods cause
the missegmentation in Fig. 1B(e). Although for this exam-
ple a better result can be obtained by emphasizing smooth
priors (increasing λ), the bad effect of large area of dense
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false likelihoods is hard to be eliminated in this way. More
importantly, as we mentioned in the introduction, over-
emphasizing smooth priors may cause long thin objects to
be cut off. Consequently, we often find it very hard to set
the parameter λ. In fact, when a large quantity of false like-
lihoods is present, one can never get accurate segmentation
by solely tuning parameters of the energy equation.

2.3 Trivial likelihoods vs. false likelihoods

Recall that p(xi |F) = p(xi |B) (or α̂i = 0.5) indicates the
ith pixel has equal probability to be both foreground and
background, this type of likelihoods would not take effect
to segmentation result, so we call them trivial likelihoods.
In Fig. 1(b) the likelihoods are not used, which is equiva-
lent to assign all pixels trivial likelihoods. In Fig. 1B, the
result produced without the learnt likelihoods is much better
than that produced with. This observation tells us: (1) having
trivial likelihoods is better than false likelihoods. With triv-
ial likelihoods we gain nothing, but with false likelihoods we
gain negative. False likelihoods can only make things worse.
(2) more likelihoods does not mean better result, even false
likelihoods are not considered. As in the case of Fig. 1B,
sometimes using seed constraints and the contrast-sensitive
priors is enough to get very accurate segmentation, in which
case adding the likelihoods is of little help. Even the likeli-
hoods is necessary, it is usually not necessary everywhere.

Therefore, instead of seeking the most true likelihoods,
the learning algorithm should seek the least false likelihoods
by setting some likelihoods to be trivial. Unfortunately, the
popular learning algorithms, including GMMs, k-NN, and
SVM, are all designed for highest average prediction rate
(most true likelihoods). We refer to this type of learning al-
gorithms as gainful learning. Consider the case when two
classes overlap in feature space, which corresponds to the
case when the foreground and background have similar col-
ors, in the overlapped regions a gainful learning algorithm
would prefer the class that occurs more often, which would
definitely cause the other class be misclassified. According
to our above analysis, in such a difficult case it is better to
faithfully answer “unknown” in order to eliminate the risk of
producing false likelihoods. If a learning algorithm behaves
like this, it is called faithful learning. A faithful learning al-
gorithm should never make a decision unless it is confident
of the answer, so it is more trustworthy and more suitable
for learning the segmentation likelihoods.

3 Learning reliable likelihoods

A gainful learning algorithm tends to make a mistake in two
cases, the first case is when some parts of the foreground and
background have similar colors (Fig. 1B); the second case is

Fig. 2 Missegmentation due to uncovered cluster of colors. (a) Input
image and strokes. The yellow background object is covered by nei-
ther foreground nor background brushes. (b) Result (bottom) got with
likelihoods (top) learnt with GMMs. The yellow object is mistaken as
foreground because it is closer to the doll than to the background in
color space (although both are very far). (c) Result got with likeli-
hoods learnt with our method. The yellow object are assigned trivial
likelihoods, and then can be correctly segmented by coherence

when user interaction is not enough to cover every cluster
of colors in the image, as demonstrated in Fig. 2. Unlike
the first case, the second case is not easy to be observed.
Figure 2 is an example just for illustration. In the first case,
different classes overlap in feature space and are hard to be
distinguished. If a feature falls into overlapped regions, it
is said to be ambiguous. In the second case, the number of
training data is not enough to cover the whole feature space,
and in uncovered regions the learning algorithm can only
give predictions by guessing. If a feature falls into uncov-
ered regions, it is said to be unconstrained. Therefore, if the
feature of a pixel is ambiguous or unconstrained, the esti-
mated likelihood is likely to be false, and to identify false
likelihoods is equivalent to identify ambiguous and uncon-
strained features.

3.1 From gainful learning to faithful learning

The result of a m-class learning algorithm can be expressed
as m-class classifier P = f (X |S), where X and S are the
input and training data sets, respectively. For image seg-
mentation X is known and finite: X = {x1, . . . ,xi , . . . ,xN },
where i is the index of pixels. Both X and S contain m

classes of features, X = ⋃
k=1,...,m Xk , S = ⋃

k=1,...,m Sk ,
with Xk and Sk the subset of features of the kth class,
Sk ⊂ Xk . P = {p1, . . . ,pi , . . . ,pN }, pi ∈ �m is the proba-
bility vector of xi , with p(k)

i the probability of the kth class,

so xi is predicted to belong to the kth class if p(k)
i is maxi-

mum.
The case of faithful learning is a little different be-

cause now besides the original m classes, an additional
class is necessary in order to answer “unknown”. We call
this special class the trivial class, and use zero to index
it. Now the probability vector is m + 1 dimensional, k =
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Fig. 3 Two cases of ambiguous features. The left is input, with black
filled shapes the training data. The right is output, and unfilled shapes
are labeled as ambiguous. Top: training data of different classes are
overlapped. Bottom: training data of different classes are connected
through test data

0,1, . . . ,m, and the corresponding classifier is represented
as P̃ = f̃ (X |S), with P̃ ⊂ �m+1.

With the above notations f can be regarded as the spe-
cial case of f̃ with p̃(0)

i ≡ 0. Interestingly, f̃ can also be
converted to f simply by introducing the training data of
the trivial class. Denoting by S̃ the extended training data
set with the trivial class’ training data set S̃0 nonempty, then
f̃ (X |S) is equivalent to f (X |S̃), and can be learnt with any
multi-class gainful learning algorithm, e.g. GMMs. How-
ever, since S̃0 cannot be drawn directly from seed pixels as
other classes, we must construct it by other way.

If X is labeled, ambiguous features can be easily found
out according to the density of the non-trivial classes.
Specifically, ∀xi ∈ X , if there exist at least two non-trivial
classes both have non-zero density at xi , xi can be consid-
ered to be ambiguous. The problem now is that X is not
labeled, so we must learn the labeling of X and construct
S̃0 at the same time, which can be done in the following EM
process:

E-step: updating the training data set S̃ according to current
labeling (or P̃ ). ∀xi ∈ X , if there exist at least two non-
trivial classes both have non-zero density at xi , first remove
xi from S̃j if xi ∈ S̃j , j �= 0, then add it into S̃0.

M-step: re-classifying X with respect to current extended
training data set S̃ , that is, redo P̃ = f (X |S̃).

The iteration can start from M-step by simply setting
p̃(0)

i = 0, ∀i. It stops until no more ambiguous features can
be found. Figure 3 shows two typical cases of input data that
may result in ambiguous features. Notice that in the first case
some training features are cast to ambiguous features. This
is reasonable because these colors occur both in foreground
and background. Unlike the first case of ambiguous features,
which can be found out in the first iteration, the second case
of ambiguous features can only be found out in the second
or third iteration because the training data of the two classes
are not overlapped; however, after the first iteration there
must be some ambiguous features emerge from the features
connecting the training data.

So far we have considered only ambiguous features, un-
constrained features cannot be identified with the above

Fig. 4 The 2-class Constrained Mapping: the input data (left) are
mapped to the intermediate space (right) under the constraints of the
training data (filled). The features contained in the large circle are un-
constrained, and are mapped to c0 = 0

method. In addition, the classifier f is also not defined yet.
In the next section we will present a novel learning algo-
rithm that can address both problems in an elegant way.

3.2 Constrained mapping

The classifier f can be regarded as a map f : X → P , with-
out loss of generality, it can be decomposed into two con-
secutive maps f † : X → Y , f ‡ : Y → P , with Y ⊂ �n

the intermediate space, and Y = {y1, . . . ,yi , . . . ,yN }. Let
C = {c1, . . . , ck, . . . , cm} be a set of points in �n. Our basic
idea is simple: to choose f †, so that ‖yi − ck‖ < ‖yi − ck′ ‖,
∀k′ �= k, if xi belongs to the kth class. ck is called the center
of the kth class in the intermediate space. Note that f † it-
self is a classifier that coincide with f , so f ‡ is used only to
convert the distance in the intermediate space to probability,
and is easy to be determined once f † is given.

Let us assign each pair of features xi ,xj a weight wij ,
which measures their similarity. Larger wij means xi and xj

are more likely to belong to the same class, then in order
to make f † meet our requirement, yi and yj should stay
closer in �n, so we can force them to have the following
relationship:

yi =
∑

j wjiyj∑
j wji

j = 1, . . . , i − 1, i + 1, . . . ,N (7)

which means yi is the weight sum of all yj , j �= i, with wji

as the weights. The larger wji would pull yi closer to yj , just
as we have expected. On the other hand, if xi is a training
feature, yi should be the center of the corresponding class:

yi = ck if xi ∈ Sk (8)

Now Y can be obtained by solving the system of linear equa-
tions (7) under the constraints of (8). We call this method
constrained mapping (CM) in that it maps the input data di-
rectly into the intermediate space under the constraints pro-
vided by the training data, as illustrated in Fig. 4.

The centers Although in theory CM can work if only no
two centers are the same, the choice of the centers does in-
fluence its accuracy. Consider the case when m = 3 (3-class
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Fig. 5 The centers of the 3-class Constrained Mapping

CM), and an ambiguous feature xi that has equal probabil-
ity to be all of the three classes, then the ideal position for yi

should have equal distance to the three centers c1, c2 and c3.
However, you can easily verify that such point is not exist if
the intermediate space is one dimensional.

Generally, since ambiguous features may occur between
any two classes, in order to ensure that every ambiguous fea-
ture can find a proper position in the intermediate space, the
occupying region of every class in the intermediate space
should be neighbor to the occupying region of every other
class. In addition, classes should be treated equally if we
have no reason to prefer any of them. Therefore, we propose
to choose the centers c1, . . . , ci , . . . , cm as the vertices of a
regular m-polyhedral in space �m−1. For m = 2, it is a line
segment; for m = 3, it is an equilateral triangle (Fig. 5(a));
for m = 4, it is a regular tetrahedral, etc.

The trivial class An advantage of CM is that it provides
us a natural way to incorporate the trivial class. Denoting
by c0 the center of the trivial class. In view of ambigu-
ous features, c0 should have equal distance to other centers,
and thus should be the circumcenter of the chosen regular
m-polyhedral (Fig. 5(b)). Figure 5(c) shows the occupying
region of the trivial class (the hatched region). Notice that
according to (7), yi always fall in the convex hull formed
by c1, . . . , cm, so from Fig. 5(c) you can see the non-trivial
classes are separated apart by the trivial class.

We still have two unsolved problems; one is how to com-
pute the weights, the other is how to identify unconstrained
features. In fact this two problems are closely related. We
use the Gaussian kernel as the weighting function:

wij = e
− ‖xi−xj ‖2

2σ2 (9)

When the distance of xi and xj is much larger than σ , wij is
very small and can be truncated to zero. This simple op-
eration brings us two great benefits: first, the linear system
becomes much sparser and thus can be solved much eas-
ier; second, the unreliable “weak connections” between fea-
tures are disconnected. Weak connections are troublesome
because they are not able to faithfully reflect user intention,
as demonstrated in Fig. 2. Recall that unconstrained features
are those features that fall into uncovered regions, which im-
plies they are far from training data, and by disconnecting

weak connections, unconstrained features are isolated from
training data, and then solving (7) would map them all to the
trivial solution 0 due to the missing of the constraints of (8),
as illustrated in Fig. 4. So in order to merge unconstrained
features into the trivial class, we need only to truncate the
small weights to zero and then properly choose the centers
so that c0 = 0.

Connections with previous methods Equation (7) can be
written in matrix form:

LY = 0 (10)

where Y = (y1, . . . ,yi , . . . ,yN)T is a matrix of unknowns.
Since Y can be solved column by column, we can tempo-
rally suppose it is a column vector. L is a N × N matrix
defined as follows:

Lij =
{∑

j ′=1,...,i−1,i+1,...,N wj ′i if i = j

−wji otherwise
(11)

L is widely known as the Laplace–Beltrami operator. It has
appeared in circuit theory [8], spectral clustering [15], man-
ifold learning [2, 13] and image segmentation [11].

Among all of those works the one most close to CM is
[13], which is a transductive learning algorithm attempts to
minimize the following objective function:

argmin
Y

Y T LY + c(Y − Y0)
T D(Y − Y0) (12)

s.t. YT Y = 1 and YT 1 = 0 (13)

where Y0 represents the value of the labeled data; D is a
N × N diagonal matrix, Dii = 1 if xi is labeled, Dii = 0
otherwise; c is a large constant number. In [13], the above
problem is treated as a constrained eigenvalue problem [9],
and its optimal solution can be approximated through the
leading eigenvectors of L. This approach is very similar
to [2], and both are inherited from unsupervised ratio-cuts
[18]. In unsupervised case, D = 0, so in order to fix the so-
lution, (13) must be introduced to remove arbitrary scaling
(by YT Y = 1) and the trivial solution (by YT 1 = 0). In su-
pervised case we need no longer to do like this because now
Y is uniquely determined by (12). Taking derivative to (12)
with respect to Y and setting it to zero results:

(L + cD)Y = cDY0 (14)

One can easily verify that to solve the above linear system
is equivalent to solve (7) under the constraint of (8), so for
two-class learning without considering the trivial class, CM
is equivalent to [13] if the latter uses all eigenvectors. How-
ever, CM is much faster than [13] because to solve the linear
system (14) is much faster than to search the eigenvectors
of L (a few seconds against several minutes).
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3.3 Implementation details

Naive implementation of the algorithm proposed in this sec-
tion may result in poor performance. In order to determine
whether a feature is ambiguous or not, we need to estimate
the kernel density of the non-trivial classes, which is costly
in high dimensional space. In this paper we use RGB color
of pixels as their features, and define density at each posi-
tion as the number of samples contained in the 9 × 9 × 9
cube centered at it, then the density can be computed ef-
ficiently by extending the integral image [22] to 3D color
space, which is straightforward.

There are two ways to truncate the weights, one is to trun-
cate all weights below a given threshold, the other is to keep
only the largest k weights. We test both ways and find they
have no large difference in accuracy, while the latter way is
more efficient because it can be greatly accelerated through
kd-tree. We also find that CM is not sensitive to the choice
of k, in our implementation we choose k = 15. Notice that k

is much smaller than the number of features, so the property
of (7) is just locally preserved. Globally preservation of (7)
can be achieved by using large k, but we found it brings us
nothing except large computational cost.

After getting yi , we can compute the probability vector
of xi (to determine f ‡). Specifically, let dik = 1

‖yi−ck‖ , k =
0,1, . . . ,m. xi is trivial if di0 > dik,∀k �= 0. The probability
vector pi then can be computed as:

p(k)
i =

{
1/m if xi is trivial

dik∑
k �=0 dik

otherwise (15)

If xi is trivial, we simply set p(k)
i ≡ 1/m so that it has equal

probability to be all classes, which means the correspond-
ing pixels are assigned trivial likelihoods, just as we have
expected.

4 Experimental results

In experiments we use the proposed method to learn the like-
lihoods of unlabeled pixels. The priors model is chosen to be
the contrast-sensitive Ising prior [3]. The final segmentation
result is obtained by minimizing (5) with the binary graph-
cuts [5].

In order to evaluate the quality of the learnt likelihoods,
we first normalize it so that p(xi |F)+p(xi |B) = 1,∀i, then
compute the gain, error and loss as follows:

gain = 1

N

∑

i∈T

∣∣p(xi |F) − p(xi |B)
∣∣

error = 1

N

∑

i∈F

∣∣p(xi |F) − p(xi |B)
∣∣ (16)

loss = 1 − gain − error

Table 1 Gain (%), error (%) and computation time (seconds) of differ-
ent learning algorithms (gain/error(time)). In brackets is the number of
different colors contained in each image. CM∗ and FL∗ quantize input
image into 4096 colors with median-cut. k-NN is accelerated through
kd-tree

Figure 1A [56018] Figure 1B [33865] Figure 6A [50180]

GMM 96.1/1.74(0.44) 82.5/10.2(0.29) 54.2/9.09(0.33)

k-NN 96.4/1.37(1.42) 82.7/9.61(2.16) 74.9/6.37(1.86)

SVM 94.9/1.53(0.97) 80.4/11.3(7.06) 77.5/5.09(41.5)

CM 92.9/0.80(5.61) 81.5/9.05(4.45) 77.0/4.75(3.36)

CM∗ 93.1/0.82(0.51) 80.9/9.05(0.52) 57.6/3.15(0.48)

FL 91.3/0.34(8.67) 69.6/0.65(7.17) 48.7/0.78(9.91)

FL∗ 92.0/0.39(0.88) 70.1/0.91(0.85) 50.9/1.85(0.88)

where T and F are the sets of pixels with true and false
likelihoods, respectively, N is the number of pixels. Let us
denote by FL the proposed faithful learning algorithm (CM
is just one step of FL). Table 1 lists the gain and the er-
ror rates of different methods as well as their computation
time, from which you can see that CM achieves lower er-
ror rates than GMMs, k-NN and SVM. Since CM needs to
solve a large linear system, it is not as fast as GMMs and
k-NN. Fortunately, observing that the size of the linear sys-
tem is equal to the number of different colors, so CM can be
greatly accelerated by quantizing the input image with less
colors. CM∗ is a version of CM that quantizes input image
with 4096 colors. The accuracy of CM∗ is comparable with
CM, but CM∗ is much faster. Compared with CM , FL fur-
ther reduces the error rates to a great extent. Since FL can
converge in only two or three iterations, at the same time the
matrix L needs only to be computed once, FL costs only a
little more time than CM.

Figure 6A is an example of complex color distribution.
For such images it is very hard to cover every cluster of
colors with brush, in which case k-NN would produce a
lot of false likelihoods in the uncovered regions, while our
method performs much better by introducing some trivial
likelihoods. Both Figs. 6B and 7 are challenging examples
of ambiguous colors. Our method assigns only to those pix-
els of unambiguous colors nontrivial likelihoods, so it pro-
duces better results than both k-NN (which introduces too
many false likelihoods) and the method that does not make
use of any learnt likelihoods (which introduces no true like-
lihoods). Table 2 lists the error rates of the segmentation re-
sults obtained with the likelihoods learnt through k-NN and
our method.

The missegmentation as in Fig. 6A(d) can be eliminated
by increasing coherency. However, in this way the long thin
objects may be cut off. Even if this would not happen, to tune
the parameters is very tedious. In fact the error is due to false
likelihoods but not the lacking of coherency, so it is unwise
to reduce error by increasing coherency. Figure 6B shows
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Fig. 6 Segmentation results. (a) Input image and strokes. (b) Segmen-
tation result without using the learnt likelihoods. (c), (d) The likeli-
hoods learnt with k-NN and the corresponding segmentation result.

(e), (f) The likelihoods learnt with our method and the corresponding
segmentation result. In (e), the pixels with intensity 127 (as the pixels
in the rectangle) are assigned trivial likelihoods

Table 2 Error rates (%) of the final segmentation produced with like-
lihoods learnt through k-NN and our method

Figure 1A Figure 1B Figure 6A Figure 6B Figure 7

k-NN 0.65 5.88 2.28 1.30 11.8

FL 0.69 0.96 0.72 0.83 0.86

that our method is helpful to solve this problem. Since most
false likelihoods are eliminated by the proposed learning
method, using weak coherency is enough to get a good result
(Fig. 6B(f)), otherwise strong coherency is necessary in or-
der to counteract the effect of false likelihoods (Fig. 6B(d)).

In [10], the authors showed that using the learnt likeli-
hoods is helpful to segment objects of many disconnected
parts. Figure 8A illustrates this case. However, if our pur-
pose is to get only one of these parts, say, the largest flower
in Fig. 8, using the likelihoods learnt with previous learning
algorithms may cause problems because now the foreground
and background have nearly the same color distribution.
With our method one can deal with both cases easily. In the
first case it can greatly reduce interaction (Fig. 8A), in the
second case the user needs only to mark the largest flower as
foreground and one of other flowers as background, then all
flowers would be assigned trivial likelihoods and can be cor-
rectly segmented (Fig. 8B). Note that in the second case, the
likelihoods of the background regions other than the flowers
still take effect.

Besides Graph Cut, we also tested Random Walks [10].
The likelihoods learnt with our method again produced
much better results when the input image has a complex
color distribution (Fig. 9). In fact, we found that when the
learnt likelihoods is involved as the segmentation cues, it
would dominate the overall effect of the segmentation re-
sult. The missegmentation produced by GC and RW even
tends to appear at the same place, both in regions of many
false likelihoods.

Fig. 7 A challenging example of ambiguous colors. (a) Input and the
result without using the learnt likelihoods. (b) The likelihoods learnt
with k-NN and the final segmentation result. (c) The likelihoods learnt
with the proposed method and the final segmentation result

Fig. 8 Segmenting object of many disconnected parts (top) or only
one of the parts (bottom), with the likelihoods learnt with the proposed
method both cases can be handled easily. The middle column shows
the learnt likelihoods in both cases

5 Conclusion

This paper proposed a novel method to learn the segmen-
tation likelihoods. The proposed method can be combined
with wide variety of segmentation methods to improve their
robustness against complex color distribution. We demon-
strated that the likelihoods learning algorithm should seek
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Fig. 9 Applying the proposed method to both Graph Cuts (GC) and
Random Walks (RW) based segmentation. From top to bottom: input
and the results without using the likelihoods, results of k-NN, results of
our method. From left to right: input and the learnt likelihoods, results
of GC, results of RW

for high reliability but not for high prediction rate, then
proposed a faithful learning algorithm, which makes deci-
sions only when it is confident of the answer. We introduced
a density-based method that can be used to identify am-
biguous features in a few EM iterations. In each iteration,
a novel transductive learning algorithm, namely, the Con-
strained Mapping, is used to do a classification and identify
unconstrained features.

Both qualitative and quantitative evaluation to the pro-
posed method can convince us that: (1) CM produces less
error than previous popular learning algorithms; (2) the pro-
posed faithful learning algorithm can greatly reduce the
quantity of false likelihoods; (3) reducing the quantity of
false likelihoods is helpful to get better segmentation with
less user interaction, at the same time can make the system
more predictable and more controllable.

A limitation of our work is that it considers only the like-
lihoods learnt based on color distribution. We believe that by
considering all cues simultaneously, one can further achieve
improvements for more challenging examples.
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