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Abstract

Existing video object cutout systems can only deal with limited
cases. They usually require detailed user interactions to segment
real-life videos, which often suffer from both inseparable statistics
(similar appearance between foreground and background) and tem-
poral discontinuities (e.g. large movements, newly-exposed regions
following disocclusion or topology change).

In this paper, we present an efficient video cutout system to meet
this challenge. A novel directional classifier is proposed to handle
temporal discontinuities robustly, and then multiple classifiers are
incorporated to cover a variety of cases. The outputs of these clas-
sifiers are integrated via another classifier, which is learnt from real
examples. The foreground matte is solved by a coherent matting
procedure, and remaining errors can be removed easily by additive
spatio-temporal local editing. Experiments demonstrate that our
system performs more robustly and more intelligently than existing
systems in dealing with various input types, thus saving a lot of user
labor and time.

CR Categories: I.4.6 [Computer Graphics]: Image Processing
and Computer Vision—Segmentation - Pixel classification;

Keywords: video segmentation, object cutout, pixel classification

Links: DL PDF WEB VIDEO

1 Introduction

Extraction of dynamic video object is normally a labor-intensive
and time-consuming task. Although great successes have been
achieved over the past decade [Chuang et al. 2002; Agarwala et al.
2004; Li et al. 2005; Bai et al. 2009], existing methods for video
object cutout are not yet efficient enough for real-life videos, and
numerous user interactions are required to remove the errors caused
by inseparable statistics and temporal discontinuities. Inseparable
statistics are notoriously problematic in the fields of image and
video segmentation. Temporal discontinuities can be caused by
sudden occlusion/disocclusion, topology changes and fast motion,
as demonstrated in Fig. 1. Discontinuous regions are difficult to
segment correctly due to the lack of reliable temporal constraints.

Early video cutout methods based on global classifiers [Li et al.
2005; Wang et al. 2005] have proved to be sensitive to inseparable
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Figure 1: Temporal discontinuities in video. Local classifiers can-
not correctly segment the newly-exposed regions in frame t by sam-
pling only in the corresponding windows in frame t − 1, and the
errors then would be magnified in frame t+ 1.

statistics. To overcome this problem, Bai et al. [2009] proposes lo-
cal classifiers. The resulting system is known as Video Snapcut, and
has been successfully incorporated into Adobe After Effect CS5 as
the Rotobrush tool. However, as shown in Fig. 1, when compared
with global classifiers, local classifiers are more sensitive to tem-
poral discontinuities because of their limited coverage. In fact, the
problem is not restricted to the local classifier, all methods relying
on local temporal continuity suffer from the same problem, includ-
ing the 3D graph-cut [Li et al. 2005; Tong et al. 2011] and the 3D
extension [Tang et al. 2011] of the color line model [Levin et al.
2008] in video cube.

Some efforts have been made to address the problem of temporal
discontinuity. Bai et al. [2010] proposes a multi-size classifier with
a size which is adaptively adjusted based on the local registration
error. However, in newly-exposed regions such as regions A and
B in Fig. 1, the proper window size is obviously independent of lo-
cal registration errors, and is thus difficult to determine. In [Zhong
et al. 2010], local and global classifiers are combined in order to
deal with occlusion. However, because global classifier is sensitive
to inseparable statistics, this method cannot achieve robust segmen-
tation for videos of complex scenes.

Our Approach: We present a video cutout system which is capa-
ble of handling all common cases well; our system produces much
fewer errors than existing systems, and therefore can greatly reduce
the number of user interactions. We achieve this mainly by a com-
bination of three approaches:

• A medium-scale classifier to robustly handle temporal discontinu-
ity. We propose the unbiased directional classifiers (UDCs). Unlike
local classifiers in previous methods, whose support windows are
always square or circular [Bai et al. 2009; Zhong et al. 2010; Bai
et al. 2010], UDCs reside in a set of long-narrow and directional
support windows, which enables them to explore long-distance re-
gion similarities while maintaining relatively small coverage, mak-
ing them robust against both inseparable statistics and temporal dis-
continuities. By integrating the classifiers in different directions,
large image movements in any direction can be captured, and spa-
tial context information can also be explored more effectively.
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Figure 2: Classifiers used in our system.

• A learning-based approach to combine multiple classifiers for
pixel classification, which can robustly deal with complicated
cases. As illustrated in Fig. 2, our system involves four types of base
classifier: the shape prior [Bai et al. 2009], a set of local classifiers
and UDCs, and a global classifier. From left to right, the classifiers
become increasingly discontinuity-aware, but also increasingly sen-
sitive to inseparable statistics. Each type of classifier is suitable for
handling specific cases (see Section 1.1 for details), and by inte-
grating them together, our system covers all common cases.

The idea of using multiple classifiers is not new. However, previ-
ous methods usually adopted a weighted-sum approach to combine
the classifiers [Bai et al. 2009; Price et al. 2009; Yin et al. 2007],
which is difficult for complex cases, and often requires hard-to-tune
parameters. To address this problem, we propose a novel learning-
based approach to combine the classifiers. As illustrated in Fig. 2,
the outputs of the base classifiers are integrated into a new feature
vector, which is then used as the input for a combining classifier to
produce final predictions. The combining classifier is pre-trained
from a set of segmented training videos, so solutions to complex
cases can be learnt from real examples without manual setting.

• An efficient approach for progressive refinement of results. We
propose joint bidirectional propagation (JBP) and additive prop-
agation (AP). JBP can adaptively integrate the results of forward
and backward propagations to remove segmentation errors. It is
very effective because the errors produced by forward and back-
ward propagations often appear in different regions due to the op-
posite direction of the image motion (leading to different newly-
exposed regions). AP allows the user to progressively refine the
result in multiple passes without worrying about undesirable over-
writing. This is very important for attaining high-quality results.

A comprehensive review of the related literature can be found in
[Bai et al. 2009]. The rest of this paper is organized as follows. Af-
ter we provide an overview of the proposed system, we introduce
UDCs in Section 2. Other classifiers and the learning-based com-
bination approach are described in Section 3. The matte solving
method is then presented in Section 3.4. The progressive refine-
ment methods are discussed in Section 4, and are followed by the
experimental results and conclusions.

1.1 System Overview

Our system adopts the propagation workflow proposed in [Bai et al.
2009]. The user first manually segments a frame with an efficient
image cutout tool; the system then propagates the result through the
whole video, frame-by-frame, under the user’s supervision. Both
forward and backward propagations are supported, so that the user
can start to edit spatio-temporal regions from any frame.

In this paper, unless stated otherwise, we consider only forward

Figure 3: Illustration of UDCs. The left and the center im-
ages show UDCs in the directions of 0◦ and 45◦, respectively.
The right image shows the 4-directional UDCs at a single pixel
(0◦, 45◦, 90◦, 135◦).

propagation, backward propagation can be implemented in the
same way. The task of forward propagation is to segment frame
t (the target frame) based on the segmentation result of frame t− 1
(the source frame). Let It−1, It denote the two frame images, and
Mt−1, Mt denote the foreground mattes. To compensate for large
image motion, we first register It−1 to It using optical flow, and
Mt−1 is also warped in the same way. The resulting image and
matte are denoted by I ′t−1 and M ′t−1, respectively.

Given these inputs, the classification process illustrated in Fig. 2
is applied to It, assigning a probability and a confidence value to
each pixel. The roles of the classifiers in our system are distinct
from each other, and can be summarized as follows:
� local classifier: to handle continuous regions; is insensitive to

inseparable statistics and small registration error.
� shape prior: to handle continuous regions of local insepara-

ble statistics; is sensitive to registration error.
�UDCs: to handle discontinuous regions; is insensitive to in-

separable statistics and registration errors.
� global classifier: to emphasize the user intention, and can be

customized by the user interactively (see Section 3.2).
These classifiers are integrated for pixel classification, based on
which the foreground matte is solved, and the resulting errors can
be removed by spatio-temporal local editing.

2 Unbiased Directional Classifiers

In this section we will introduce Unbiased Directional Classifiers
(UDCs), other classifiers as well as the combining approach will be
presented in the next section.

2.1 Long-Narrow Directional Support Windows

A global classifier accounts for the whole image or video, while
a local classifier accounts for only a small local window. Unlike
either of them, UDCs reside in a set of medium-scale support win-
dows, as illustrated in Fig. 3, which have the following characteris-
tics: 1) Long-Narrow shape, each window covers parts of both the
foreground and the background so that the sampling process would
not be biased towards either of them; for this purpose, the window
size is fixed in one dimension but varies in the other dimension,
resulting in long narrow windows across the foreground object. 2)
Directionality, the windows can be set in different directions, and
windows in the same direction are parallel. In our system, we adopt
the 4-directional UDCs illustrated in Fig. 3(c). Using more direc-
tions would be helpful in improving the accuracy, but in practice,
we find that this is not necessary, especially when considering the
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Figure 4: The classification ability of UDCs. (a) Handling tempo-
ral discontinuities by exploring long-distance region similarities.
(b) Handling inseparable color statistics, where A, B, and C can be
best separated from the background by UDCs in the directions of
0◦, 135◦, 90◦, respectively.

computational cost. 3) Overlapping, adjacent windows in the same
direction are overlapped for better spatial coherence; specifically,
one third of each window overlaps with its neighbor at each side.
4) Full coverage, the windows in each direction can fully cover the
foreground object, and each pixel can be covered by multiple win-
dows in different directions.

In each window, a classifier is established and applied to the pix-
els inside. Because each pixel is covered by multiple windows and
thus by multiple classifiers, we select the one with the highest confi-
dence to produce the final predictions (Section 2.2). In comparison
with local and global classifiers, UDCs provide a better compro-
mise between robustness against inseparable statistics and temporal
discontinuities:

• Handling temporal discontinuities: As demonstrated in
Fig. 4(a), each UDC can explore regional similarities in a long
narrow image window, and therefore can cope with discontinuous
cases, as in regions A, B, and D in Fig. 1. The unbiased and fully-
covered properties give every pixel an equal chance to change its
state, which thus allows arbitrary foreground topology change. On
the other hand, because each UDC is insensitive to object motion in
its direction, and each pixel is covered by multiple UDCs in differ-
ent directions, image motion in any direction can thus be captured
by the UDCs in at least one direction.

• Handling inseparable statistics: UDCs are also insensitive to
inseparable statistics. The scale of UDCs is much smaller than that
of the global classifier, and meanwhile, is larger than that of the lo-
cal classifier in only one dimension. In addition, by combining the
classifiers in different directions, UDCs can make better use of spa-
tial context information, which also helps to solve the ambiguities
of color statistics, as shown in Fig. 4(b).

The long narrow shape of UDCs is essential for dealing with cases
of discontinuity while maintaining relatively small coverage. Previ-
ous local classifiers were either square [Bai et al. 2009; Zhong et al.
2010] or circular [Bai et al. 2010], so large window is necessary
in order to discover large-scale correspondence of image regions,
this would definitely ruin the locality of classifiers and make them
sensitive to inseparable statistics.

2.2 Classification of Pixels using UDCs

Like most of the previous methods, we adopted Gaussian mixture
models (GMMs) to model the color distribution in each UDC win-
dow. GMMs can be trained efficiently and have been shown to be

Figure 5: The results of UDCs, where the input image is the same
as in Fig. 4(b). The grayed regions are the pixels that are not cov-
ered by the classifiers (background). The combined result (bottom-
center) contains much fewer errors than that in each direction. The
bottom-right panel shows the selected direction at each pixel.

insensitive to noise and slight lighting changes. Each UDC con-
sists of a pair of GMMs: one for the foreground, and the other for
the background. Let p̂(x |F ) and p̂(x |B) denote the probability
densities output by the foreground and the background GMMs, re-
spectively. Here, we omit the index of UDCs for conciseness. The
probability of a pixel belonging to the foreground should then be:

p̂(x) = p̂(x |F )/(p̂(x |F ) + p̂(x |B)) (1)

Because each pixel is covered by multiple classifiers, the key to the
integration of these classifiers is the evaluation of their confidence.
In [Bai et al. 2009], the confidence of each local classifier is uni-
form for all pixels, while in practice, the accuracy of a GMM varies
considerably over different clusters of colors. It would therefore be
better to assign an individual confidence to each pixel. Here, we
propose to use the following confidence function:

f̂(x) =
|p̂(x |F )− p̂(x |B)|
p̂(x |F ) + p̂(x |B) + ε

· q(x) (2)

in which the first term can penalize both inseparable color statis-
tics and newly-exposed regions. It would be small in two cases:
1) when both p̂(x |F ) and p̂(x |B) are not small (in which case
their difference would be small compared with their sum), which
means that x has high density in both the foreground and the back-
ground distributions, and is thus inseparable; 2) when both p̂(x |F )
and p̂(x |B) are very small in comparison with ε (corresponding
to the case of newly-exposed regions). Because GMM attenuates
rapidly when the distance to the centers becomes large, ε is easy to
determine (1e-3 in our implementation).

The second term q(x) encodes the priors with regard to the accu-
racy of the GMMs, which can be learnt from the training process.
The GMMs can be expressed as p̂(x | l) =

∑Kl
k=1 βkG(x |Θk, l),

in which l ∈ {F,B} is the label of the foreground and the back-
ground, Kl is the number of Gaussian components, and Θk is the
parameter set of the k-th Gaussian component. The contribution of
each sample s to the k-th component should be:

wk(s | l) =
βkG(s |Θk, l)

p̂(s | l) (3)

which is also the weight function used in the training pro-
cess [Bilmes 1998]. Now, we can evaluate the accuracy of each
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component using the labeled training data sets SF and SB :

ekl =
∑
s∈Sl

wk(s | l)|L(s)− p̂(s)|

ckl =
∑
s∈Sl

wk(s | l)(1− |L(s)− p̂(s)|)
(4)

where L(s) is the label of s (1 if foreground, 0 if background),
so ekl and ckl actually measure the quantities of the pixels that are
misclassified and correctly classified, respectively. The accuracy of
the k-th component should then be qkl = ckl /(c

k
l + ekl ), and the

prior confidence of the GMM with respect to an unknown color x
is:

q(x | l) =

Kl∑
k=1

wk(x | l) qkl (5)

subsequently:

q(x) = p̂(x)q(x |F ) + (1− p̂(x))q(x |B) (6)

which distributes q(x) to the foreground and the background GMM
components based on the correlation of x to them.

The above method can reliably estimate the confidence of the clas-
sifiers at each pixel. As a result, the multiple classifiers covering
each pixel can be integrated simply by selecting the classifier with
maximum confidence. We use fu(x) and pu(x) to denote the out-
puts of the selected classifier for a pixel x. Fig. 5 shows how our
approach correctly incorporates the results of UDCs in different di-
rections.

Newly-exposed regions such as region C in Fig. 1 cannot be cor-
rectly segmented in the above way, because they are completely
occluded in the source frame. Discriminative classification of these
regions requires to reconstruct the background image [Bai et al.
2010; Sarim et al. 2009], which is difficult for complex scenes
with a dynamic background. In fact, because most regions of this
type are caused by foreground-background occlusion, and the fore-
ground color distribution is usually stable, we can deal with these
cases in a generative way without knowing the background appear-
ance model exactly, as in many object tracking methods [Ross et al.
2008]. In our system, this is performed automatically by the com-
bining classifier based on a prior model learnt from training exam-
ples (see Section 3.3 for details).

3 Segmentation Using Multiple Classifiers

As shown in Fig. 2, apart from UDCs, our system uses three other
types of base classifier: local classifier, global classifier and shape
prior. The final predictions are obtained by integrating the results
of all base classifiers via the combining classifier.

3.1 Local Classifier

Several methods were proposed for implementing local classifiers,
including the overlapped GMM windows used in [Bai et al. 2009]
and [Bai et al. 2010]. In [Zhong et al. 2010], local kernel density
estimation (LKDE) is proposed for local propagation. LKDE can
achieve real-time performance, but we found that in comparison
with the overlapped GMM windows, LKDE is more sensitive to
object appearance change caused by shading variations and illumi-
nation changes. A common disadvantage of both methods is that
they are both based on the foreground and background color densi-
ties, and therefore may overlook small regions, which always leads
to low densities in the color space.

We adopt local k-NN (LKNN) as classifiers for better segmenta-
tion of small regions. For each pixel x to classify, we search for

its k nearest neighbors (in the color space) from the local window
in I ′t−1. The local window is centered at x and has a size of W .
Let s1, s2, · · · , sk denote the k samples, and then the prediction is
computed as:

pl(x) =

∑k
i wili∑k
i wi

with wi = exp(−‖ si − x ‖
2

σ2
l

)

fl(x) =

∑k
i wi

k
(1− 4 var(li))

(7)

where li is the label of si (1 for foreground, 0 for background).
var(li) is the variance of the labels, which penalizes the case when
equal amounts of foreground and background samples are found
(inseparable statistics). It is easy to verify that 0 ≤ 1− 4 var(li) ≤
1. The first term of fl(x) penalizes the case of very few close neigh-
bors, which is usually due to temporal discontinuities.

The above method is simple, but effective, and is insensitive to the
setting of parameters (in our implementation k = 9, W = 21,
σl = 20). Because only a few samples are necessary to identify a
region, LKNN would not suffer from the same problems as GMM
and LKDE. Also, when compared with LKDE, it is more robust
against temporal changes of object appearance.

3.2 Global Classifier and Shape Prior

Global classifier is mainly used to emphasize user intention in our
system. If a region is found to be error-prone, the user can add
its statistics to the global classifier to prevent it from being mis-
segmented again. For this purpose, our global classifier consists of
two sets of samples: one contains the pixels of a segmented frame,
which can be re-specified at any time by the user with a simple com-
mand; the other consists of pixels manually marked using scribble
brushes, which can be specifically selected pixels, or seed pixels
added to remove segmentation errors (an option is provided for this
purpose). The manually selected samples are stored with their po-
sitions on the time axis, and for each frame, only the samples of the
nearest 3 frames that contain selected samples are used. The prob-
ability and the confidence are evaluated using the method proposed
in Section 2.2, and are denoted as pg(x) and fg(x), respectively, in
the following.

As in [Bai et al. 2009], we also use the warped matte of the source
frame (M ′t−1) to represent the shape prior ps(x). The shape confi-
dence is computed as:

fs(x) = 1− exp (−d2s(x)/σ2
s) (8)

in which ds(x) is the distance to the object boundary computed
using distance transform; σs is set to be 5 in our implementation.
The shape prior computed in this way can be regarded as a pixel-
level classifier based on dense optical flow. Because optical flow
is computed using only low-level image features, the shape prior is
different from other classifiers in that it does not use color statis-
tics. This is why it is more robust to inseparable color statistics, but
meanwhile is more sensitive to registration errors.

3.3 Learning-Based Combination of Classifiers

To combine multiple classifiers, previous methods usually adopted
a weighted-sum approach to produce the final prediction, with
weights that are adaptive to the confidences of the classifiers. The
problem with this approach is that, the confidences of different clas-
sifiers are not strictly comparable because they are measured in
different ways without an uniform criterion, and as a result, less-
confident classifiers may take greater effect.
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Figure 6: Training video data set used in our experiments. In the
parentheses is the total number of frames and videos in each subset.

Inspired by the idea of meta-learning [Vilalta and Drissi 2002], we
propose a learning-based approach to integrate the base classifiers
involved. As illustrated in Fig. 2, the integration is regarded as an-
other classification problem, v(x)→ {0, 1}, with the feature vector
v(x) to be:

v(x) = (pu, fu, pl, fl, pg, fg, ps, fs, e)(x) (9)

which is a 9-dimensional vector containing the outputs of the base
classifiers and the normalized registration error e(x). e(x) is in-
troduced to better distinguish the usages of base classifiers, it is
computed as: e(x) = 1 − exp(−ė2(x)/σ2

e), in which ė(x) is the
average registration error in the 7×7 window centered at each pixel,
and where σe is set to be 20.

To train the combining classifier, we first carefully segment a set of
videos, which are then used to generate the training data set D =
{(vi, li)}, where vi is an instance of v(x) and li ∈ {0, 1} is the
label. This needs only perform the segmentation process between
adjacent frames, and then use the outputs of the base classifiers for
each pixel as vi, with the known label of each pixel as li. To reduce
the redundancy of D, only the pixels around the object boundary
(± 30 pixels) are used for training. Fig. 6 shows some examples
of the training videos. Currently our data set contains 21 videos,
including videos of humans, animals, cartoons, and static objects.
CARTOON and STATIC are introduced mainly for evaluation (see
Section 5.1). STATIC contains very few temporal discontinuities,
and thus can serve as a bad training data set.

We select kernel density estimation as the combining classifier, so
the task of learning is to get foreground and background probabil-
ity densities over the space of v(x). Because the data set D is very
large, without an effective method, neither the training nor the test-
ing can be performed efficiently. Rather than learning the complete
density function, we learn it only at certain lattice points in the fea-
ture space, for which purpose we first reduce the feature vector to
lower dimensions. Because only binary classification is necessary,
the probability and the confidence values can be merged as:

r∗(x) = 0.5 + f∗(x)(p∗(x)− 0.5) (10)

in which ∗ ∈ {u, l, g, s} denotes the different classifiers. r∗(x) is
the merged output, with sign(r∗(x) − 0.5) representing the label
and |r∗(x)− 0.5| encoding the confidence. The feature vector then
becomes:

v̂(x) = (ru, rl, rg, rs, e)(x) (11)

with each component within a range of [0, 1]. The space of v̂(x)
is then uniformly subdivided into 205 grids, and each grid is repre-
sented by a lattice centered at it, resulting in a look-up table with
3.2M elements.

Given the training data set D, the foreground density dFk and the
background density dBk at the k-th lattice should be:

dlk =

|D|∑
i=1

[l = li] exp(−‖ ck − v̂i ‖
2

σ2
d

) l ∈ {F,B} (12)

in which ck is the coordinate of the k-th lattice; σd is set to be 0.1
in our implementation. It is not necessary to scan the data setD for
each lattice; alternatively, we add each v̂i to the lattices near it (far
lattices with very small weights are ignored). In this way, D needs
to be scanned only once, and thus is not necessary to be stored. The
training process therefore can be accomplished simultaneously with
segmentation propagations. Note that the quantity of v̂i is propor-
tional to the number of pixels. This is why we did not adopt more
sophisticated classifiers such as a support vector machine (SVM),
which may need a long time and large storage capacity to be trained.

Given the look-up table, it is very easy to combine the base classi-
fiers. For each pixel x, v̂(x) is first generated based on the outputs
of the base classifiers, and then the foreground density dF (x) and
the background density dB(x) are retrieved from the nearest lattice.
Finally the ensemble prediction can be computed as:

p(x) =
dF (x)

dF (x) + dB(x)
(13)

f(x) =
|dF (x)− dB(x)|
dF (x) + dB(x) + ε̃

(14)

The principle to evaluate the confidence is the same as that for the
first term of Equation (2), which penalizes the cases where the fore-
ground and background densities are both very high or both very
low. ε̃ is chosen to be 5 in our implementation.

The above method does not directly account for the confidences of
the base classifiers, scaling and shifting the confidence functions
has little effect on the ensemble predictions. v(x) is different for
different input cases; for example, in newly-exposed regions, e(x)
should be large, while in well-registered regions, fl(x) should be
high. By using v(x) as the feature, each case is assigned a unique
classification function learnt from real examples. In this way, com-
plicated cases can be handled easily. For example, for the case
of region C in Fig. 1, because most such regions are backgrounds
in the training data, our system tends to classify such regions as
background. Informally, a pixel with a large temporal discontinuity
(e(x) is large), and that is not recognized by both UDCs and local
classifiers (fu(x) and fl(x) are small), and at the same time is not
predicted as foreground by global classifier (pg(x) < 0.5 or fg(x)
is small), would be likely to be classified as background. We can
see how difficult it would be to discover and use such a vague rule
with the weighted-sum approach.

3.4 Segmentation by Coherent Matting

To solve the matte, previous methods usually first do binary seg-
mentation, and then refine the boundary by border matting, which
can be accomplished based on image matting methods, such as
Bayesian matting [Chuang et al. 2002; Apostoloff and Fitzgibbon
2004], Possion matting [Gong et al. 2010] and closed-form mat-
ting [Bai et al. 2009]. In fact, for propagation-based video segmen-
tation, because the probability map resulted by local propagation is
very close to the binary segmentation, it should be better to solve
the matte in one step. In our system, the final matte is solved by
minimizing the following energy equation:

α = arg min
α

∑
x∈U

[λTx (αx − αTx )2 + λCx (αx − αCx )2 ]

+ λSαTLmα

(15)
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Figure 7: The user interface of our system for local editing. The
comparative view shows the result before (left) and after (right) the
editing, and the rectangles highlight the regions being edited, so
that the user can supervise the changes easily.

which has the same form as the matting equation adopted in [Bai
et al. 2009]. U is the unknown region. Lm is the matting Laplacian
matrix [Levin et al. 2008], and λS is set to be 20. The two unary
terms encode the temporal and the spatial constraints for α.

To determine U , we first compute a combined confidence map as:

C(x) = (1− |pmax(x)− pmin(x)|) |p(x)− 0.5|
0.5

f(x) (16)

where pmax(x) and pmin(x) are the results of applying 7× 7 max-
filters and min-filters to p(x), respectively. The first term excludes
the regions with non-uniform probability (the object boundary); the
second term excludes the pixels whose probability approaches nei-
ther 0 nor 1; the third term excludes the pixels with low confidence.
The unknown region is then determined by thresholding of C(x).

αTx encodes the temporal likelihoods; in [Bai et al. 2009], it is com-
puted by tracking the local windows, which is equivalent to con-
ducting a second pass propagation. With the one-step approach,
αTx can be computed directly from p(x). We set λTx to f(x),
and defined αTx as αTx = S(po(x)), where S(.) is a sigmoid
function [Mortensen and Barrett 1999] used to impose a sparsity
prior [Rhemann et al. 2008], which can greatly reduce the numbers
of false semi-transparent pixels. αCx is used to impose boundary
conditions, for foreground and background boundary pixels it is set
to be 1 and 0, respectively. λCx is set to be a large number for bound-
ary pixels, and for interior pixels it is set to be 0, which eliminates
the effect of spatial terms.

Equation (15) can be minimized by solving a sparse linear sys-
tem. For an image containing 104 unknown pixels, our system
takes about 0.35 s to solve the equation. For cases with more un-
known pixels, we first solve the equation at a lower resolution, and
then upsample the result to the full resolution using bilateral up-
sampling [Kopf et al. 2007], the boundary is further refined using
the method proposed in [Yang et al. 2011]. The quality of the re-
sulting matte is comparable with that solved in full resolution, but
the time cost is greatly reduced. The total time for each frame does
not exceed 0.8 s for any of the examples that we have tested, which
contain unknown pixels numbering up to 105.

4 Progressive Refinement

For videos of complex scenes, it is very difficult to achieve good
results with only a single pass propagation. Our system supports
progressive refinement of the results. To edit a spatio-temporal re-
gion, the user can first remove its errors in any one frame, and then
propagate the changes forward and backward. As shown in Fig. 7,
a prompt window is presented for each region undergoing editing,

(a) (b) (c) (d)

Figure 8: Using JBP to remove errors. (a) The input image, where
the object is moving left, and so for forward propagation, the right
side is newly exposed, and for backward propagation, the left side
is newly exposed; (b) the result of a single forward pass; (c) The
result of a single backward pass; and (d) The result of a forward
pass followed by an additive backward pass.

and the effect of local editing can be observed through the compar-
ative view, which shows the results before and after the last time of
local propagation.

The key issue of local editing is to avoid undesirable overwriting,
for which purpose it should take effect only in the spatio-temporal
region to be edited. In [Bai et al. 2009], the updated region of lo-
cal editing is determined in the source frame according to the dis-
tance to the brushed pixels, which may cause neighbor regions to
be updated improperly. In addition, local editing is not always trig-
gered by user brushes, for example, small regions may be removed
by connected component analysis. An efficient local editing tool
should be able to detect all unpropagated edits.

4.1 Additive Propagation

In our system, spatio-temporal local editing is mainly achieved by
additive propagation, which requires two additional images, M left

t

andM right
t , to be stored for each frame to save respectively the matte

being propagated to the previous frame and the next frame at the last
time. When performing additive propagation, only the differences
of Mt and M right

t (for forward propagation) or M left
t (for backward

propagation) are propagated. Denoted by Ds the set of pixels to
be propagated, and D′s the corresponding pixels of Ds in the target
frame (determined using optical flow). For additive propagation,
we first calculate the bounding box for Ds, and then propagate the
matte in the rectangle to the target frame using the method proposed
in Section 3. The resulting probability and confidence maps are
then combined with the matte of the target frame as follows:

p′(x) = τ(x)p(x) + (1− τ(x))α0(x)

f ′(x) = τ(x)f(x) + (1− τ(x))
(17)

in which α0(x) is the current alpha value of x, and the weight
function τ(x) = exp(−dg(x)/σg), where dg(x) is the geodesic
distance from x to D′s [Bai and Sapiro 2007]. The final matte is
solved based on p′(x) and f ′(x) with the method in Section 3.4.

The above method is easy to be implemented, and M left
t and M right

t

are necessary to be stored only when the matte is to be modified.
Compared to the local editing method in [Bai et al. 2009], it is
more accurate in identifying the affected regions, and thus can bet-
ter avoid undesirable overwriting. Also, by using M left

t and M right
t

to detect residual matte differences, any edit to the matte can be ac-
cumulated and saved. As a result, the user can work freely without
worrying that the edits might not be propagated sufficiently.
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(a) Source (b) Target (c) Local (d) UDC (e) Global (f) Combined (g) UDC-0◦ (h) UDC-90◦

Figure 9: Probability maps produced by different classifiers. See text for explanation.

4.2 Joint Bidirectional Propagation

Based on the additive propagation, our system can perform bidi-
rectional propagation more effectively than in previous methods.
For each video, a forward pass is first applied; the user then edits
the last frame to remove any errors, and this is followed by an ad-
ditive backward pass. In this way, the backward pass would take
effect only in the regions that had been mis-segmented in the for-
ward pass. We call this process as Joint Bidirectional Propagation
(JBP).

Using JBP can greatly reduce the number of user interactions re-
quired, as demonstrated in Fig. 8. The propagation algorithm is
more likely to produce errors in newly-exposed regions, which are
very different in forward and backward propagations because of the
opposite directions of the image movements. Therefore, the errors
produced by forward and backward propagations often appear in
different regions. By adaptively integrating the results of the for-
ward and backward propagations, JBP can remove a large number
of errors with only a little user effort.

The most effective way to use our system is to first perform a round
of JBP, and then use AP to remove the remaining errors. During the
forward pass of JBP, the user can temporarily ignore the errors in
newly-exposed regions, which is better to be removed in the back-
ward pass. Please see the accompanying video for a demonstration.

5 Experiments

We implemented the proposed cutout system in C++ and tested it
on a PC with four 3.3 GHz CPUs. UDCs in different directions
along with other base classifiers are evaluated in parallel in multi-
ple threads for acceleration. Note that UDCs and LKNN in differ-
ent windows are independent, so they are highly suitable for im-
plementation on GPU. However, we are currently mainly focused
on improving the robustness of our system against complex cases.
A GPU-based fast implementation will be considered in the future.
For most of the used examples, our system takes about 1.5 s to per-
form a full propagation. AP can be much faster, depending on the
area of the regions to be propagated. If not stated otherwise, the
combining classifier is trained with the training data set described
in Section 3.3. The testing examples are made to be different from
the training examples in both foreground and background for a fair
evaluation1.

5.1 Evaluation of the Proposed Methods

Fig. 9 shows the probability map produced by the different classi-
fiers for a typical example containing both newly-exposed regions

1The training and testing examples can be found in the supplemental
materials except the CARTOON set.

Table 1: The error rates (%) resulted by different combinations of
the base classifiers. The examples are shown in Fig. 10 except the
CAR, which is shown in the accompanying video. Φ denotes the set
of the four base classifiers.

CJ TMM DX CW CAR

Φ 3.02 1.37 4.05 3.71 1.36
Φ - shape 3.09 1.34 4.02 3.82 1.40
Φ - local 3.32 1.41 4.18 4.20 1.53
Φ - UDCs 3.67 1.50 4.51 3.84 1.46
Φ - global 2.95 1.33 3.95 3.79 1.30
shape + local 3.54 1.78 4.64 4.34 1.22
UDCs + global 3.93 1.45 4.37 4.06 1.92

and inseparable color statistics. Note that only UDCs correctly seg-
ment the newly-exposed background hole. Global classifier pro-
duces a lot of errors because of the inseparable color statistics. Lo-
cal classifier mis-segments the background hole and produces many
errors near the hands, both of which are caused by the large tem-
poral discontinuity. The integrated result is more accurate than that
of each individual classifier. Fig. 9(g) and Fig. 9(h) are produced
by horizontal and vertical UDCs, respectively, from which we can
see how the UDCs correctly deal with the complex case, where the
horizontal UDCs contribute more to recognition of the background
hole, while the vertical UDCs contribute more to separation of the
color statistics.

To evaluate the effects of each base classifier, we tested the four
base classifiers in different combinations. The results are listed in
Table 1. For each combination, the combining classifier is first re-
trained. Each test video is uniformly divided into a series of 10-
frame subsequences2, and for each subsequence, the result of its
first frame is initialized with the ground-truth, and is then propa-
gated forward automatically until the last frame, whose error rate is
regarded as the error rate of the subsequence3. The error rate of each
video is the mean error rates of its subsequences. From Table 1, we
can find that removing either local classifiers or UDCs will signif-
icantly increase the error rates. Removing local classifiers will in-
crease the errors near the object boundary, and introduce more false
background holes (as in Fig. 13). UDCs contribute a lot if the video
contains many discontinuities that cannot be correctly recognized
by global classifier (e.g. BF). Both shape prior and global classifier
are not very stable, and may degrade the accuracy at times, par-
ticularly the global classifier. Intuitively, the training process will
assign global classifier lower priority, but it seems that this is still

2The length of subsequences can be chosen freely, but should not be too
short so that accumulated errors can be observed.

3In order to reflect visual effects, the error rates in our experiments are
normalized by the number of foreground pixels.
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Table 2: Evaluation of different combination methods of the base
classifiers. MAX-CONF selects the classifier with maximum confi-
dence to produce the outputs, other rows show cross-validation of
the proposed learning-based method. The data set ALL contains all
training videos. The error rates (%) are computed as in Table 1.

HUMAN ANIMAL CARTOON STATIC

MAX-CONF 5.38 4.84 4.89 1.78
ALL 2.91 2.20 2.11 1.05

HUMAN 2.88 2.12 2.05 1.09
ANIMAL 2.95 2.26 2.13 1.04

CARTOON 3.13 2.32 2.14 1.06
STATIC 3.54 3.03 2.68 1.12

not able to completely restrain its side effect. The example CAR
is the video of a static car, and thus contains much fewer temporal
discontinuities than other examples, in this case adding UDCs and
global classifier would not help to improve the accuracy.

Table 2 shows cross-validation of the learning-based combination
method, and compares it with the max-confidence strategy. The er-
ror rates are produced by the automatic 10-frame propagation pro-
cess described above. We can find that the accuracy achieved by
using HUMAN, ANIMAL, and CARTOON for training are com-
parable. The reason is that the combining classifier is not affected
by shape and appearance of the training video objects, because the
feature vector v(x) contains only the outputs of the base classifiers
and the local registration errors, and any raw image features such
as colors and gradients are not involved. It seems that the only
requirement of the training video set is that it should contain suffi-
cient temporal discontinuities and inseparable statistics, so that the
space of v̂(x) can be covered. To prove this we introduced the data
set STATIC, which are captured in static scenes, and thus contains
very few temporal discontinuities. From table 2 we can find that
STATIC results in significant more errors than other training data
sets, this is the case even when it itself is used for testing. The
max-confidence strategy produces much more errors than the pro-
posed learning-based method, this is expected because as we have
analyzed in Section 3.3, the confidence values resulted by different
classifiers are not strictly comparable. A careful tuning of the con-
fidence functions may be helpful for improving the accuracy, but
that would be difficult when multiple classifiers are involved.

5.2 Results and Comparisons

Fig. 10 shows some of the examples used in our experiments. These
examples are challenging because of the complex backgrounds, the
inseparable color statistics, the low-contrast object boundaries, and
the complex varying topologies. Our system can deal with all of
these cases efficiently. Note that it would be difficult to remove the
errors via a scribble brush in small regions, such as the tail of the
elephant, and the small background hole of TMM. Thanks to the
power of UDCs, our system can correctly segment these regions
with only a little user interactions.

Fig. 11 shows the results of our method for automatic segmentation
of 10 frames of the CJ example, as well as some clips obtained us-
ing Rotobrush and [Zhong et al. 2010] for comparison. Rotobrush
is based on Video Snapcut [Bai et al. 2009], which uses local clas-
sifiers for segmentation propagation. [Zhong et al. 2010] combines
local and global classifiers to handle occlusions. As shown, Roto-
brush produced significant errors in region A, B because of the fast
motion and newly-exposed regions. [Zhong et al. 2010] can recog-
nize only a part of the background hole in region B, and produced
significant errors in region A and C because of the sensitivity of

Table 3: Comparisons of user labor (average NoBs by each user)
and time (in minutes) costs, and the resulting accuracy (mean ab-
solute error). In order to reduce the users’ work, only the first 100
frames were used except for the example CAR.

RotoBrush Ours

Frames NoBs Time Error (%) NoBs Time Error (%)

CJ 100/386 392 22.4 1.41 213 14.6 1.33
TMM 100/390 197 12.9 0.79 114 8.7 0.68
DX 100/300 423 26.5 1.63 192 13.5 1.45
CW 100/300 484 25.1 1.08 143 11.2 0.91
CAR 252 83 11.2 0.94 56 9.3 0.92

global classifier to complex color distributions. Our method cor-
rectly dealt with all challenging cases.

By allowing sufficient user interactions, an interactive segmentation
system can always achieve high-quality results. The most impor-
tant measure of the system is therefore not the resulting accuracy,
but the amount of user work and time required to obtain an accu-
rate result. Because most existing systems use scribble brushes to
remove the segmentation errors, it is reasonable to take the number
of brushstrokes (NoBs) required by a system as a measure of the
user work. To evaluate our system, we asked 17 users to perform a
study, where 15 of them were familiar with Photoshop, 3 of them
had experience with Rotobrush, but none of them had used our sys-
tem. The users were first trained with Rotobrush and our system,
and were then asked to segment the testing videos with both sys-
tems. They were not allowed to finish until the referee considered
the result to be good enough. Table 3 shows the results of the test,
including both the labor and time costs and the resulting accuracy.4

Compared with Rotobrush, our system requires less time, and far
fewer interactions, while at the same time achieving better accu-
racy. Note that although UDCs does not do positive contribution
for the example CAR (see Table 1), our system still outperforms
RotoBrush because of the use of JBP. Even in static scenes, a lot of
errors will be caused by discontinuities due to depth variations.

5.3 Failure Cases

As with most of the previous methods, our method mainly uses
color statistics for pixel classification, which inevitably introduces
some limitations. Because the local classifier and shape prior can-
not take effect in discontinuous regions, it is more likely to suffer
from inseparable statistics than in the continuous regions. Fig. 12
shows a typical failure case for our method, where the newly-
exposed background regions are incorrectly segmented because of
the similar appearance of the foreground. The errors in region A
can be removed easily by a backward propagation, while the errors
in region B require more brushstrokes for them to be removed.

Fig. 13 shows another typical failure case for our method that re-
sulted in false background holes, which is a side-effect of non-local
propagations. False background regions may appear only in newly-
exposed foreground regions whose appearances are similar to some
parts of the background, and such cases do not occur very often
in practice (far less frequently than newly-exposed background re-
gions). Also, most false background holes are very small, and can
thus be removed easily by appropriate setting of the minimum size
of the background regions. We should also note that it is much
easier to remove a background hole than to produce such a hole
interactively, because the latter requires more careful interactions.

4For Rotobrush, we used a keyboard-mouse hook program to record the
number of brushes for each frame.
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Figure 10: Some of the examples used in our experiments. The regions in the rectangles demonstrate the challenges.

Figure 11: Results and comparisons. Top: the results of our method for automatic segmentation of 10 frames of the example CJ; Bottom:
comparisons of our method with the results of Rotobrush and Zhong et al. [2010] in the regions A, B, and C.

Figure 12: Failure case caused by inseparable statistics in discon-
tinuous regions.

As in previous systems, our method also suffers from motion blur
and illumination changes [Bai et al. 2009]. Also, although it does
not use binary segmentation to produce the results, our method still
cannot be used for semi-transparent objects or hairs, because the
segmentation results are propagated by binary classifiers.

5.4 Discussions

Video segmentation is still a difficult task even if accurate optical
flow is available. Although temporal discontinuity can be detected
using optical flow, it does no help to the classification of pixels
in discontinuous regions. Temporal discontinuity may appear fre-
quently, even for the case of a simple foreground topology (e.g. CW
in Fig. 10, please see the accompanying video for a demonstration).
For both Rotobrush and our system, most errors are produced in dis-
continuous regions (as in Fig. 12). In discontinuous regions, only
UDCs and global classifier can take effect, so for further improve-

Figure 13: Failure case with false background holes, where some
foreground colors are newly-exposed.

ments, more advanced features are necessary. With the proposed
learning-based combination approach, it should be easy to intro-
duce new features. However, using more features would result in a
higher dimensionally integrated feature vector, whose space would
be difficult to cover by using a look-up table. We adopted the cur-
rent approach just in order to handle the large quantity of training
data. Considering the scalability requirements, a well-designed cas-
cade classifier may be a better choice.

In our system, the propagation of segmentation results is always
conducted between adjacent frames. This is different from Video
Snapcut, which stabilizes the foreground to some keyframes in or-
der to reduce the accumulation errors. Accumulation errors are not
a great problem for our system, because first, our system produces
far fewer errors than the previous propagation methods; second, the
accumulated errors can be removed easily using JBP (see the ac-
companying video). Because adjacent frames are easier to be regis-
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tered, temporal coherence can be better preserved using our system.

Compared with the multi-size classifier proposed in [Bai et al.
2010], our method is more practical. Although in theory the multi-
size classifier covers all scales, from pixel-level to the global level,
in practice, it is difficult to determine the proper window size.
More importantly, when considering inseparable color statistics and
computational efficiency, traditional classifiers with regular support
windows are not suitable for larger scales, as discussed at the end
of Section 2.1. The advantages of UDCs are mainly due to its long
narrow shape; the directionality is important for handling different
cases of object shape and motion, and for better use of the spa-
tial context information. For the case where the foreground only
moves horizontally, it is enough to achieve good results by using
only UDC-0◦.

6 Conclusions

We have presented a video cutout system that is capable of dealing
with temporal discontinuities while also remaining robust to insep-
arable color statistics. Achieving these two goals simultaneously
is not easy, because they tend to conflict. We introduced UDCs, a
novel segmenting classifier to handle temporally discontinuous re-
gions. Multiple classifiers in different scales are then combined via
a learning-based approach. Compared to the traditional weighted-
sum approach, the learning-based combination approach can signif-
icantly improve the segmentation accuracy. The foreground matte
is finally solved using a coherent matting procedure, and remaining
errors can be removed efficiently by JBP and AP.

Experiments show that when compared with existing systems, our
system performs more intelligently in handling complex cases, and
can save a great deal of user effort and time. Our approach can
make full use of color statistics over different scales for pixel clas-
sification. The learning-based combination approach can also be
improved by incorporating more features. Our future work will ex-
plore the inclusion of more advanced features for better robustness,
and the power of GPU for better efficiency.
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